

CERTIFICATE OF ACCREDITATION

The ANSI National Accreditation Board

Hereby attests that

Environment Associates, Inc. 9604 Variel Avenue

Chatsworth, CA 91311

Fulfills the requirements of

ISO/IEC 17025:2017

In the field of

TESTING

This certificate is valid only when accompanied by a current scope of accreditation document. The current scope of accreditation can be verified at www.anab.org.

Jason Stine, Vice President Expiry Date: 13 June 2024

Certificate Number: L2140

SCOPE OF ACCREDITATION TO ISO/IEC 17025:2017

Environment Associates, Inc.

9604 Variel Avenue Chatsworth, CA 91311 Q.A. Director/Q.A. Rep – Steve Hollinger

818 709 0568

TESTING

Valid to: June 13, 2024 Certificate Number: L2140

Environmental Simulation

Version 010 Issued: October 26, 2023

Specific Tests and/or Properties Measured	Specification, Standard, Method, or Test Technique	Items, Materials or Product Tested	Key Equipment or Technology
Thermal (-180 to 300) °C	MIL-STD-202 Methods: 107 MIL-STD-883 Method: 1011 MIL-STD-810 Methods:501, 502, 503, 524 IEC 60068-2-1, 2-2, 2-14 RTCA/DO 160	Various	Cycling Temperature, Temperature Shock Freeze Thaw & Resistance to Solder Heat.
Thermal-Vacuum (-180 to 180) °C Up to 1×10 ⁻⁶ Torr	ASTM E2900, ASTM E 595- 15, SMC-S-016	Various	Hi-Vac Chamber, Vacuum Control System, Temperature Plate, Thermocouple, Data Logger, LN ₂
Rain	MIL-STD-810 Methods: 506, 521 RTCA/DO 160	Various	Rain Exposure Freezing Rain
Solar Radiation	MIL-STD-810 Method: 505	Various	Solar Radiation Exposure
Combined Environment (-65 to 100) °C (10 to 95) %RH 150k ft	MIL-STD-810 Method: 520 RTCA/DO 160	Various	Temperature, Altitude, Icing & Humidity

Environmental Simulation

Specific Tests and/or Properties Measured	Specification, Standard, Method, or Test Technique	Items, Materials or Product Tested	Key Equipment or Technology
Altitude Site to 650k ft	MIL-STD-810 Method: 500 MIL-STD-202 Method: 105 IEC 60068-2-13 RTCA/DO 160 ASTM D4169	Various	Altitude Temperature Altitude
Temperature / Humidity (-20 to 100) °C (10 to 95) %RH	ASTM D6653 MIL-STD-810 Method: 507 MIL-STD-202 Method: 103,106 RTCA/DO 160 IEC 60068-2-30, 2-78	Various	Humidity-Temperature & Moisture Resistance
Salt Spray	MIL-STD-883 Method: 1009 MIL-STD-810 Method: 509 MIL-STD-202 Method: 101 IEC 60068-2-11 ASTM B117 RTCA/DO 160	Various	Salt Spray Salt Fog & Corrosion

Environmental Simulation

Specific Tests and/or Properties Measured	Specification, Standard, Method, or Test Technique	Items, Materials or Pr <mark>oduct Tested</mark>	Key Equipment or Technology
Sand & Dust	MIL-STD-202 Method: 110 MIL-STD-810 Method: 510 RTCA/DO 160	Various	Sand & Dust Exposure
Fluid Susceptibility	IEC 60068-2-68 MIL-STD-810 Methods: 504, 512 MIL-STD-202 Methods: 104, 215 RCTA/DO 160	Various	Fluid & Chemical Exposure & Immersion
Conditioning Up to 250 °C	MIL-STD-202 Method: 108 ASTM D4332	Various	Ambient or Specified
Enclosure Protection	IEC 60529	Various	Material and Fluid Ingress and Hazardous Access

Vibration and Mechanical

Version 010 Issued: October 26, 2023

Specific Tests and/or Properties Measured	Specification, Standard, Method, or Test Technique	Items, Materials or Product Tested	Key Equipment or Technology
Vibration (0.5 to 100) g Sine (0.5 to 80) g RMS	MIL-STD-167 MIL-STD-810 Methods: 514, 519, 528 MIL-STD-883 Method: 2007 MIL-STD-202 Methods: 201, 204, 214 IEC 60068-2-6, 2-64 RTCA/DO 160 ASTM D4169 ASTM D999 ASTM D4728	Various	Sine, Random, Sine on Random & Gunfire Vibration
Acceleration 100 g MAX	MIL-STD-883 Method: 2001 MIL-STD-810 Method: 513 MIL-STD-202 Method: 212	Various	Acceleration
Mechanical Shock 10000 g Max	MIL-STD-883 Method: 2002 MIL-STD-810 Methods: 516, 517, 519, 522 MIL-STD-202 Methods: 207, 213 IEC 60068-2-27	Various	Pyrotechnic Shock, Specified Pulse Shock

Vibration and Mechanical

Specific Tests and/or Properties Measured	Specification, Standard, Method, or Test Technique	Items, Materials or Product Tested	Key Equipment or Technology
Impact / Drop	MIL-STD-202 Method: 203 IEC 60068-2-31 RTCA/DO 160 ASTM D4169 ASTM D5276 ASTM D880 ASTM D6055 ASTM D6179	Various	Corner Drop, Edge Drop, Flat Drop & Impact
Compression Up to 5 000 lbs	ASTM D6344 ASTM D4169 ASTM D642	Various	Flat Compression
Explosion	MIL-STD-202 Method: 109 MIL-STD-810 Method: 511	Various	Explosive Atmosphere
Seal	MIL-STD-202 Method: 112 ASTM D4169 ASTM D951	Various	Seal Effectiveness

Notes:

- 1. This scope is formatted as part of a single document including Certificate of Accreditation No. L2140.
- 2. This laboratory offers commercial testing service.
- 3. Comparable methods of the prior revisions of the documents listed on this scope may be used.
- 4. Customer specifications derived from the technologies listed above may be used.

Jason Stine, Vice President

